Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2010 Jan;29(1):30-43. doi: 10.1109/TMI.2009.2021941. Epub 2009 May 19.

Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation.

Author information

  • 1Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, CA 90095, USA.

Abstract

We compared four automated methods for hippocampal segmentation using different machine learning algorithms: 1) hierarchical AdaBoost, 2) support vector machines (SVM) with manual feature selection, 3) hierarchical SVM with automated feature selection (Ada-SVM), and 4) a publicly available brain segmentation package (FreeSurfer). We trained our approaches using T1-weighted brain MRIs from 30 subjects [10 normal elderly, 10 mild cognitive impairment (MCI), and 10 Alzheimer's disease (AD)], and tested on an independent set of 40 subjects (20 normal, 20 AD). Manually segmented gold standard hippocampal tracings were available for all subjects (training and testing). We assessed each approach's accuracy relative to manual segmentations, and its power to map AD effects. We then converted the segmentations into parametric surfaces to map disease effects on anatomy. After surface reconstruction, we computed significance maps, and overall corrected p-values, for the 3-D profile of shape differences between AD and normal subjects. Our AdaBoost and Ada-SVM segmentations compared favorably with the manual segmentations and detected disease effects as well as FreeSurfer on the data tested. Cumulative p-value plots, in conjunction with the false discovery rate method, were used to examine the power of each method to detect correlations with diagnosis and cognitive scores. We also evaluated how segmentation accuracy depended on the size of the training set, providing practical information for future users of this technique.

PMID:
19457748
[PubMed - indexed for MEDLINE]
PMCID:
PMC2805054
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk