Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2009 May 15;137(4):761-72. doi: 10.1016/j.cell.2009.03.039.

Essential role for TRPC5 in amygdala function and fear-related behavior.

Author information

  • 1Department of Cardiology, Howard Hughes Medical Institute, Manton Center for Orphan Disease, Children's Hospital Boston, Boston, MA 02115, USA.


The transient receptor potential channel 5 (TRPC5) is predominantly expressed in the brain where it can form heterotetrameric complexes with TRPC1 and TRPC4 channel subunits. These excitatory, nonselective cationic channels are regulated by G protein, phospholipase C-coupled receptors. Here, we show that TRPC5(-/-) mice exhibit diminished innate fear levels in response to innately aversive stimuli. Moreover, mutant mice exhibited significant reductions in responses mediated by synaptic activation of Group I metabotropic glutamate and cholecystokinin 2 receptors in neurons of the amygdala. Synaptic strength at afferent inputs to the amygdala was diminished in P10-P13 null mice. In contrast, baseline synaptic transmission, membrane excitability, and spike timing-dependent long-term potentiation at cortical and thalamic inputs to the amygdala were largely normal in older null mice. These experiments provide genetic evidence that TRPC5, activated via G protein-coupled neuronal receptors, has an essential function in innate fear.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk