Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Hazard Mater. 2009 Sep 30;169(1-3):1-15. doi: 10.1016/j.jhazmat.2009.03.137. Epub 2009 Apr 7.

Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

Author information

  • 1Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India. akharitash@gmail.com

Abstract

PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be enhanced by physical/chemical pretreatment of contaminated soil. Addition of biosurfactant-producing bacteria and light oils can increase the bioavailability of PAHs and metabolic potential of the bacterial community. The supplementation of contaminated soils with compost materials can also enhance biodegradation without long-term accumulation of extractable polar and more available intermediates. Wetlands, too, have found an application in PAH removal from wastewater. The intensive biological activities in such an ecosystem lead to a high rate of autotrophic and heterotrophic processes. Aquatic weeds Typha spp. and Scirpus lacustris have been used in horizontal-vertical macrophyte based wetlands to treat PAHs. An integrated approach of physical, chemical, and biological degradation may be adopted to get synergistically enhanced removal rates and to treat/remediate the contaminated sites in an ecologically favorable process.

PMID:
19442441
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk