Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proteome Sci. 2009 May 14;7:19. doi: 10.1186/1477-5956-7-19.

Classification-based comparison of pre-processing methods for interpretation of mass spectrometry generated clinical datasets.

Author information

  • 1Department of Gynaecologic Oncology, Academic Medical Center, University of Amsterdam, the Netherlands. w.wegdam@amc.uva.nl

Abstract

BACKGROUND:

Mass spectrometry is increasingly being used to discover proteins or protein profiles associated with disease. Experimental design of mass-spectrometry studies has come under close scrutiny and the importance of strict protocols for sample collection is now understood. However, the question of how best to process the large quantities of data generated is still unanswered. Main challenges for the analysis are the choice of proper pre-processing and classification methods. While these two issues have been investigated in isolation, we propose to use the classification of patient samples as a clinically relevant benchmark for the evaluation of pre-processing methods.

RESULTS:

Two in-house generated clinical SELDI-TOF MS datasets are used in this study as an example of high throughput mass-spectrometry data. We perform a systematic comparison of two commonly used pre-processing methods as implemented in Ciphergen ProteinChip Software and in the Cromwell package. With respect to reproducibility, Ciphergen and Cromwell pre-processing are largely comparable. We find that the overlap between peaks detected by either Ciphergen ProteinChip Software or Cromwell is large. This is especially the case for the more stringent peak detection settings. Moreover, similarity of the estimated intensities between matched peaks is high.We evaluate the pre-processing methods using five different classification methods. Classification is done in a double cross-validation protocol using repeated random sampling to obtain an unbiased estimate of classification accuracy. No pre-processing method significantly outperforms the other for all peak detection settings evaluated.

CONCLUSION:

We use classification of patient samples as a clinically relevant benchmark for the evaluation of pre-processing methods. Both pre-processing methods lead to similar classification results on an ovarian cancer and a Gaucher disease dataset. However, the settings for pre-processing parameters lead to large differences in classification accuracy and are therefore of crucial importance. We advocate the evaluation over a range of parameter settings when comparing pre-processing methods. Our analysis also demonstrates that reliable classification results can be obtained with a combination of strict sample handling and a well-defined classification protocol on clinical samples.

PMID:
19442271
[PubMed]
PMCID:
PMC2689848
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk