Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Genomics. 2008 May;9(3):184-90. doi: 10.2174/138920208784340740.

A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana.

Author information

  • 1Lehrstuhl für Botanik, Department Biologie, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany.

Abstract

Protein phosphorylation is a major mode of regulation of metabolism, gene expression and cell architecture. In chloroplasts, reversible phosphorylation of proteins is known to regulate a number of prominent processes, for instance photosynthesis, gene expression and starch metabolism. The complements of the involved chloroplast protein kinases (cpPKs) and phosphatases (cpPPs) are largely unknown, except 6 proteins (4 cpPKs and 2 cpPPs) which have been experimentally identified so far. We employed combinations of programs predicting N-terminal chloroplast transit peptides (cTPs) to identify 45 tentative cpPKs and 21 tentative cpPPs. However, test sets of 9 tentative cpPKs and 13 tentative cpPPs contain only 2 and 7 genuine cpPKs and cpPPs, respectively, based on experimental subcellular localization of their N-termini fused to the reporter protein RFP. Taken together, the set of enzymes known to be involved in the reversible phosphorylation of chloroplast proteins in A. thaliana comprises altogether now 6 cpPKs and 9 cpPPs, the function of which needs to be determined in future by functional genomics approaches. This includes the calcium-regulated PK CIPK13 which we found to be located in the chloroplast, indicating that calcium-dependent signal transduction pathways also operate in this organelle.

KEYWORDS:

Arabidopsis thaliana; chloroplast; chloroplast transit peptide; protein kinase; protein phosphatase; protein phosphorylation; proteomics.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk