Display Settings:

Format

Send to:

Choose Destination
Hepatology. 2009 Jun;49(6):1992-2000. doi: 10.1002/hep.22862.

Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model.

Author information

  • 1Stem Cell Program, University of California Davis Medical Center, Sacramento, CA 95817, USA.

Abstract

Human cord blood stem cells (hCBSCs) have been reported to generate hepatocyte-like cells and thus hold promise for repairing damaged liver. However, the frequency of hCBSC-derived hepatocytes varies tremendously between different studies, and it is still controversial as to whether hCBSC-derived cells can transdifferentiate into hepatocytes or simply fuse to recipient hepatocytes. We used the beta-glucuronidase-deficient nonobese diabetic/severe combined immunodeficient/mucopolysaccharidosis type VII (NOD/SCID/MPSVII) mouse model for better identification of engrafted cells. We transplanted lineage-depleted human umbilical cord blood-derived cells with high aldehyde dehydrogenase activity (ALDH(hi)Lin(-)) into irradiated NOD/SCID/MPSVII mice followed by carbon tetrachloride administration to induced liver damage. ALDH(hi)Lin(-) cells were efficiently engrafted in the recipient mouse livers and improved recovery of the mice from toxic insult. The percentage of human cells in these livers ranged between 3% and 14.2% using quantitative real-time polymerase chain reaction. Furthermore, human-originated cells expressing liver-specific alpha1-antitrypsin messenger RNA, albumin and hepatocyte nuclear factor 1 protein were detected in the recipient livers. Interestingly, human versus murine centromeric fluorescent in situ hybridization analysis on the liver sections demonstrated that most human cells were not fused to mouse cells. However, the majority of the human originated albumin-expressing cells also carried mouse genetic material, hence were the product of cell fusion.

CONCLUSION:

hCBSCs or their progeny may home to the injured liver and release trophic factors that hasten tissue repair, whereas fusion of these cells with hepatocytes may occur rarely and contribute to a lesser extent to liver repair.

PMID:
19437487
[PubMed - indexed for MEDLINE]
PMCID:
PMC3030962
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk