Display Settings:

Format

Send to:

Choose Destination
Opt Express. 2009 May 11;17(10):8036-45.

High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.

Author information

  • 1School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Abstract

In recent years, many nanophotonic devices have been developed. Much attention has been given to the waveguides carrying surface plasmon polariton modes with subwavelength confinement and long propagation length. However, coupling far field light into a nano structure is a significant challenge. In this work, we present an architecture that enables high efficiency excitation of nanoscale waveguides in the direction normal to the waveguide. Our approach employs a bowtie aperture to provide both field confinement and high transmission efficiency. More than six times the power incident on the open area of the bowtie aperture can be coupled into the waveguide. The intensity in the waveguide can be more than twenty times higher than that of the incident light, with mode localization better than lambda(2)/250. The vertical excitation of waveguide allows easy integration. The bowtie aperture/waveguide architecture presented in this work will open up numerous possibilities for the development of nanoscale optical systems for applications ranging from localized chemical sensing to compact communication devices.

PMID:
19434135
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk