Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
N Biotechnol. 2009 Apr;25(4):195-203. doi: 10.1016/j.nbt.2008.12.009. Epub 2009 Feb 3.

Next-generation DNA sequencing techniques.

Author information

  • Ecole Polytechnique Federal Lausanne, EPFL, Switzerland. wilhelm.ansorge@epfl.ch

Abstract

Next-generation high-throughput DNA sequencing techniques are opening fascinating opportunities in the life sciences. Novel fields and applications in biology and medicine are becoming a reality, beyond the genomic sequencing which was original development goal and application. Serving as examples are: personal genomics with detailed analysis of individual genome stretches; precise analysis of RNA transcripts for gene expression, surpassing and replacing in several respects analysis by various microarray platforms, for instance in reliable and precise quantification of transcripts and as a tool for identification and analysis of DNA regions interacting with regulatory proteins in functional regulation of gene expression. The next-generation sequencing technologies offer novel and rapid ways for genome-wide characterisation and profiling of mRNAs, small RNAs, transcription factor regions, structure of chromatin and DNA methylation patterns, microbiology and metagenomics. In this article, development of commercial sequencing devices is reviewed and some European contributions to the field are mentioned. Presently commercially available very high-throughput DNA sequencing platforms, as well as techniques under development, are described and their applications in bio-medical fields discussed.

PMID:
19429539
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk