Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2009 May 6;20(18):185101. doi: 10.1088/0957-4484/20/18/185101. Epub 2009 Apr 14.

Reverse DNA translocation through a solid-state nanopore by magnetic tweezers.

Author information

  • 1Department of Physics, Brown University, Providence, RI 02912, USA.

Abstract

Voltage-driven DNA translocation through nanopores has attracted wide interest for many potential applications in molecular biology and biotechnology. However, it is intrinsically difficult to control the DNA motion in standard DNA translocation processes in which a strong electric field is required in drawing DNA into the pore, but it also leads to uncontrollable fast DNA translocation. Here we explore a new type of DNA translocation. We dub it 'reverse DNA translocation', in which the DNA is pulled through a nanopore mechanically by a magnetic bead, driven by a magnetic-field gradient. This technique is compatible with simultaneous ionic current measurements and is suitable for multiple nanopores, paving the way for large scale applications. We report the first experiment of reverse DNA translocation through a solid-state nanopore using magnetic tweezers.

PMID:
19420602
[PubMed - indexed for MEDLINE]
PMCID:
PMC2716733
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd. Icon for PubMed Central
    Loading ...
    Write to the Help Desk