Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2009 May;19(5):886-96. doi: 10.1101/gr.089391.108.

Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila.

Author information

  • 1Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA. gfindlay@u.washington.edu

Abstract

As genomic sequences become easier to acquire, shotgun proteomics will play an increasingly important role in genome annotation. With proteomics, researchers can confirm and revise existing genome annotations and discover completely new genes. Proteomic-based de novo gene discovery should be especially useful for sets of genes with characteristics that make them difficult to predict with gene-finding algorithms. Here, we report the proteomic discovery of 19 previously unannotated genes encoding seminal fluid proteins (Sfps) that are transferred from males to females during mating in Drosophila. Using bioinformatics, we detected putative orthologs of these genes, as well as 19 others detected by the same method in a previous study, across several related species. Gene expression analysis revealed that nearly all predicted orthologs are transcribed and that most are expressed in a male-specific or male-biased manner. We suggest several reasons why these genes escaped computational prediction. Like annotated Sfps, many of these new proteins show a pattern of adaptive evolution, consistent with their potential role in influencing male sperm competitive ability. However, in contrast to annotated Sfps, these new genes are shorter, have a higher rate of nonsynonymous substitution, and have a markedly lower GC content in coding regions. Our data demonstrate the utility of applying proteomic gene discovery methods to a specific biological process and provide a more complete picture of the molecules that are critical to reproductive success in Drosophila.

PMID:
19411605
[PubMed - indexed for MEDLINE]
PMCID:
PMC2675977
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk