Format

Send to:

Choose Destination
See comment in PubMed Commons below
Semin Cell Dev Biol. 2009 Jul;20(5):543-56. doi: 10.1016/j.semcdb.2009.04.013. Epub 2009 May 3.

Bioelectric mechanisms in regeneration: Unique aspects and future perspectives.

Author information

  • Tufts Center for Regenerative and Developmental Biology, Biology Department, Tufts University, Medford, MA 02155, USA. michael.levin@tufts.edu

Abstract

Regenerative biology has focused largely on chemical factors and transcriptional networks. However, endogenous ion flows serve as key epigenetic regulators of cell behavior. Bioelectric signaling involves feedback loops, long-range communication, polarity, and information transfer over multiple size scales. Understanding the roles of endogenous voltage gradients, ion flows, and electric fields will contribute to the basic understanding of numerous morphogenetic processes and the means by which they can robustly restore pattern after perturbation. By learning to modulate the bioelectrical signals that control cell proliferation, migration, and differentiation, we gain a powerful set of new techniques with which to manipulate growth and patterning in biomedical contexts. This chapter reviews the unique properties of bioelectric signaling, surveys molecular strategies and reagents for its investigation, and discusses the opportunities made available for regenerative medicine.

PMID:
19406249
[PubMed - indexed for MEDLINE]
PMCID:
PMC2706303
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk