Format

Send to

Choose Destination
See comment in PubMed Commons below
Mech Ageing Dev. 2009 Jul;130(7):409-19. doi: 10.1016/j.mad.2009.04.002. Epub 2009 May 3.

Chronic NF-kappaB activation delays RasV12-induced premature senescence of human fibroblasts by suppressing the DNA damage checkpoint response.

Author information

  • 1Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece.

Abstract

Normal cells divide for a limited number of generations, after which they enter a state of irreversible growth arrest termed replicative senescence. While replicative senescence is due to telomere erosion, normal human fibroblasts can undergo stress-induced senescence in response to oncogene activation, termed oncogene-induced senescence (OIS). Both, replicative and OIS, initiate a DNA damage checkpoint response (DDR) resulting in the activation of the p53-p21(Cip1/Waf1) pathway. However, while the nuclear factor-kappaB (NF-kappaB) signaling pathway has been implicated in DDR, its role in OIS has not been investigated. Here, we show that oncogenic Ha-RasV12 promoted premature senescence of IMR-90 normal human diploid fibroblasts by activating DDR, hence verifying the classical model of OIS. However, enforced expression of a constitutively active IKKbeta T-loop mutant protein (IKKbetaca), significantly delayed OIS of IMR-90 cells by suppressing Ha-RasV12 instigated DDR. Thus, our experiments have uncovered an important selective advantage in chronically activating canonical NF-kappaB signaling to overcome the anti-proliferative OIS response of normal primary human fibroblasts.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk