Send to

Choose Destination
See comment in PubMed Commons below
Development. 2009 Jun;136(11):1849-58. doi: 10.1242/dev.031989. Epub 2009 Apr 29.

FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism.

Author information

  • 1Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA.


The first neural crest cells to emigrate from the neural tube are specified as neurons and glial cells and are subsequently followed by melanocytes of the skin. We wished to understand how this fate switch is controlled. The transcriptional repressor FOXD3 is expressed exclusively in the neural/glial precursors and MITF is expressed only in melanoblasts. Moreover, FOXD3 represses melanogenesis. Here we show that avian MITF expression begins very early during melanoblast migration and that loss of MITF in melanoblasts causes them to transdifferentiate to a glial phenotype. Ectopic expression of FOXD3 represses MITF in cultured neural crest cells and in B16-F10 melanoma cells. We also show that FOXD3 does not bind directly to the MITF promoter, but instead interacts with the transcriptional activator PAX3 to prevent the binding of PAX3 to the MITF promoter. Overexpression of PAX3 is sufficient to rescue MITF expression from FOXD3-mediated repression. We conclude that FOXD3 controls the lineage choice between neural/glial and pigment cells by repressing MITF during the early phase of neural crest migration.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk