Display Settings:

Format

Send to:

Choose Destination
Opt Express. 2009 Apr 27;17(9):7519-24.

Compressing surface plasmons for nano-scale optical focusing.

Author information

  • 1NSF Nano-scale Science and Engineering Center, University of California, Berkeley, CA 94720, USA.

Abstract

A major challenge in optics is how to deliver and concentrate light from the micron-scale into the nano-scale. Light can not be guided, by conventional mechanisms, with optical beam sizes significantly smaller than its wavelength due to the diffraction limit. On the other hand, focusing of light into very small volumes beyond the diffraction limit can be achieved by exploiting the wavelength scalability of surface plasmon polaritons. By slowing down an optical wave and shrinking its wavelength during its propagation, optical energy can be compressed and concentrated down to nanometer scale, namely, nanofocusing. Here, we experimentally demonstrate and quantitatively measure the nanofocusing of surface plasmon polaritons in tapered metallic V-grooves down to the deep subwavelength scale - approximately lambda/40 at wavelength of 1.5 micron - with almost 50% power efficiency.

PMID:
19399129
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk