Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gen Comp Endocrinol. 2010 Feb 1;165(3):456-68. doi: 10.1016/j.ygcen.2009.04.011. Epub 2009 Apr 23.

Endocrine control of sexual behavior in teleost fish.

Author information

  • 1Department of Biology, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan. munakata@staff.miyakyo-u.ac.jp

Abstract

Sexual behavior is one of the most profound events during the life cycle of animals that reproduce sexually. After completion of gonadal development that is mediated by various hormones, oviparous teleosts perform a suite of behaviors, often termed as spawning behavior. This is particularly important for teleosts that have their gametes fertilized externally as the behavior patterns ensures the close proximity of both sexes for gamete release, fusion and ultimately the production of offspring. As in other vertebrates, sexual behavior of fish is also under the control of hormones. Testicular androgen is a requirement for male sexual behavior to occur in most fish species that have been studied. Unlike tetrapods, however, ovarian estrogen does not appear to be essential for the occurrence of female sexual behavior for fish that have their gametes fertilized externally. Prostaglandins produced in the ovary after ovulation act as a trigger in some teleosts to induce female sexual behavior. Potentiating effects of gonadotropin-releasing hormone in the brain on sexual behavior are reported in some species. Under endocrine regulation, male and female fish exhibit gender-typical behavior during spawning, but in some fish species there is also some plasticity in their sexual behavior. Sex changing fish can perform both male-typical and female-typical sexual behaviors during their lifetime and this sexual plasticity can also be observed in non-sex changing fish when undergoing hormonal treatment. Although the neuroanatomical basis is not clear in fish, results of field and laboratory observations suggest that some teleosts possess a sexually bipotential brain which can regulate two types of behaviors unlike most other vertebrates which have a discrete sex differentiation of their brain and can only perform gender-typical sexual behavior.

Copyright 2009 Elsevier Inc. All rights reserved.

PMID:
19393660
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk