Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2009 May;9(5):2113-9. doi: 10.1021/nl9006112.

Combining pattern instability and shape-memory hysteresis for phononic switching.

Author information

  • 1Institute for Soldier Nanotechnologies, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Abstract

We report a fully reversible and robust shape-memory effect in a two-dimensional nanoscale periodic structure composed of three steps, the elastic instability governing the transformation, the plasticity that locks in the transformed pattern as a result of an increase in glass transition temperature (T(g)), and the subsequent elastic recovery due to the vapor-induced decrease in T(g). Solvent swelling of a cross-linked epoxy/air cylinder structure induces an elastic instability that causes a reversible change in the shape of the void regions from circular to oval. The pattern symmetry changes from symmorphic p6mm to nonsymmorphic p2gg brought via the introduction of new glide symmetry elements and leads to a significant change in the phononic band structure, specifically in the opening of a new narrow-band gap due to anticrossing of bands, quite distinct from gaps originating from typical Bragg scattering. We also demonstrate that numerical simulations correctly capture the three steps of the shape-memory cycle observed experimentally.

PMID:
19391612
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk