Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):585-9. doi: 10.1197/jamia.M3091. Epub 2009 Apr 23.

Natural language processing framework to assess clinical conditions.

Author information

  • 1Medquist, Inc, Morgantown, WV, USA.

Abstract

OBJECTIVE The authors developed a natural language processing (NLP) framework that could be used to extract clinical findings and diagnoses from dictated physician documentation. DESIGN De-identified documentation was made available by i2b2 Bio-informatics research group as a part of their NLP challenge focusing on obesity and its co-morbidities. The authors describe their approach, which used a combination of concept detection, context validation, and the application of a variety of rules to conclude patient diagnoses. RESULTS The framework was successful at correctly identifying diagnoses as judged by NLP challenge organizers when compared with a gold standard of physician annotations. The authors overall kappa values for agreement with the gold standard were 0.92 for explicit textual results and 0.91 for intuited results. The NLP framework compared favorably with those of the other entrants, placing third in textual results and fourth in intuited results in the i2b2 competition. CONCLUSIONS The framework and approach used to detect clinical conditions was reasonably successful at extracting 16 diagnoses related to obesity. The system and methodology merits further development, targeting clinically useful applications.

PMID:
19390100
[PubMed - indexed for MEDLINE]
PMCID:
PMC2705264
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk