Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Alcohol Clin Exp Res. 2009 Jun;33(6):1075-88. doi: 10.1111/j.1530-0277.2009.00929.x. Epub 2009 Mar 23.

Effects of prenatal ethanol exposure on hypothalamic-pituitary-adrenal function across the estrous cycle.

Author information

  • 1Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.



Rats prenatally exposed to ethanol (E) typically show increased hypothalamic-pituitary-adrenal (HPA) responses to stressors in adulthood. Importantly, prenatal ethanol may differentially alter stress responsiveness in male and female offspring, suggesting a role for the gonadal hormones in mediating the effects of ethanol on HPA activity. We investigated the role of ethanol-induced changes in hypothalamic-pituitary-gonadal (HPG) activity in the differential HPA regulation observed in E compared to control females across the estrous cycle.


Peripheral hormones and changes in central neuropeptide mRNA levels were measured across the estrous cycle in adult female offspring from E, pair-fed (PF) and ad libitum-fed control (C) dams.


Ethanol females showed normal estrous cyclicity (vaginal smears) but delayed sexual maturation (vaginal opening). Both HPG and HPA activity were differentially altered in E (and in some cases, PF) compared to control females as a function of estrous cycle stage. In relation to HPG activity, E and PF females had higher basal and stress estradiol (E(2)) levels in proestrus compared to other phases of the cycle, and decreased GnRH mRNA levels compared to C females in diestrus. Further, E females had greater variation in LH than PF and C females across the cycle, and in proestrus, only E females showed a significant LH increase following stress. In relation to HPA activity, both basal and stress CORT levels and overall ACTH levels were greater in E than in C females in proestrus. Furthermore, AVP mRNA levels were increased overall in E compared to PF and C females.


These data demonstrate ethanol-induced changes in both HPG and HPA activity that are estrous phase-specific, and support the possibility that changes in HPA activity in E females may reflect differential sensitivity to ovarian steroids. E females appear to have an increased HPA sensitivity to E(2), and a possible shift toward AVP regulation of HPA activity. That PF were similar to E females on some measures suggests that nutritional effects of diet or food restriction played a role in mediating at least some of the changes observed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk