Send to

Choose Destination
See comment in PubMed Commons below
Biol Reprod. 2009 Aug;81(2):293-301. doi: 10.1095/biolreprod.109.075960. Epub 2009 Apr 15.

Spermatogonial stem cells derived from infertile Wv/Wv mice self-renew in vitro and generate progeny following transplantation.

Author information

  • 1Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.


Loss-of-function mutation of the Kit gene causes a severe defect in spermatogenesis that results in infertility due to the inability of its cognate ligand, KIT ligand (KITL), to stimulate spermatogonial proliferation and differentiation. Although self-renewal of mouse spermatogonial stem cells (SSCs) depends on glial cell line-derived neurotrophic factor (GDNF), there is no unequivocal evidence that SSCs with a KIT deficiency can self-renew in vivo or in vitro. In the testis of W(v)/W(v) mice, in which the KIT tyrosine kinase activity is impaired, spermatogonia with SSC phenotype were identified. When W(v)/W(v) spermatogonia were cultured in an SSC culture system supplemented with GDNF in a 10% O(2) atmosphere, they formed clumps and proliferated continuously. An atmosphere of 10% O(2) was better than 21% O(2) to support SSC self-renewal. When W(v)/W(v) clump-forming germ cells were transplanted into testes of infertile wild-type busulfan-treated mice, they colonized the seminiferous tubules but did not differentiate. However, when transplanted into the testes of infertile W/W(v) pups, they restored spermatogenesis and produced spermatozoa, and progeny were generated using microinsemination. These results clearly show that SSCs exist in W(v)/W(v) testes and that they proliferate in vitro similar to wild-type SSCs, indicating that a functional KIT protein is not required for SSC self-renewal. Furthermore, the results indicate that a defect of KIT/KITL signaling of W(v)/W(v) SSCs does not prevent spermatogonial differentiation and spermatogenesis in some recipient strains.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk