Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2009 Jun;296(6):C1310-20. doi: 10.1152/ajpcell.00573.2008. Epub 2009 Apr 15.

Upregulation of RGS4 expression by IL-1beta in colonic smooth muscle is enhanced by ERK1/2 and p38 MAPK and inhibited by the PI3K/Akt/GSK3beta pathway.

Author information

  • 1Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA. whu@temple.edu

Abstract

Initial Ca(2+)-dependent contraction of intestinal smooth muscle is inhibited upon IL-1beta treatment. The decrease in contraction reflects the upregulation of regulator of G protein signaling-4 (RGS4) via the canonical inhibitor of NF-kappaB kinase-2 (IKK2)/IkappaB-alpha/NF-kappaB pathway. Here, we show that the activation of various protein kinases, including ERK1/2, p38 MAPK, and phosphoinositide 3-kinase (PI3K), differentially modulates IL-1beta-induced upregulation of RGS4 in rabbit colonic muscle cells. IL-1beta treatment caused a transient phosphorylation of ERK1/2 and p38 MAPK. It also caused the phosphorylation of Akt and glycogen synthase kinase-3beta (GSK3beta), sequential downstream effectors of PI3K. Pretreatment with PD-98059 (an ERK inhibitor) and SB-203580 (a p38 MAPK inhibitor) significantly inhibited IL-1beta-induced RGS4 expression. In contrast, LY-294002 (a PI3K inhibitor) augmented, whereas GSK3beta inhibitors inhibited, IL-1beta-induced RGS4 expression. PD-98059 blocked IL-1beta-induced phosphorylation of IKK2, degradation of IkappaB-alpha, and phosphorylation and nuclear translocation of NF-kappaB subunit p65, whereas SB-203580 had a marginal effect, implying that the effect of ERK1/2 is exerted on the canonical IKK2/IkappaB-alpha/p65 pathway of NF-kappaB activation but that the effect of p38 MAPK may not predominantly involve NF-kappaB signaling. The increase in RGS4 expression enhanced by LY-294002 was accompanied by an increase in the phosphorylation of IKK2/IkappaB-alpha/p65 and blocked by pretreatment with inhibitors of IKK2 (IKK2-IV) and IkappaB-alpha (MG-132). Inhibition of GSK3beta abolished IL-1beta-induced phosphorylation of IKK2/p65. These findings suggest that ERK1/2 and p38 MAPK enhance IL-1beta-induced upregulation of RGS4; the effect of ERK1/2 reflects its ability to promote IKK2 phosphorylation and increase NF-kappaB activity. GSK3beta acts normally to augment the activation of the canonical NF-kappaB signaling. The PI3K/Akt/GSK3beta pathway attenuates IL-1beta-induced upregulation of RGS4 expression by inhibiting NF-kappaB activation.

PMID:
19369446
[PubMed - indexed for MEDLINE]
PMCID:
PMC2692422
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk