Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2009 May 26;48(20):4371-6. doi: 10.1021/bi900442z.

Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.

Author information

  • 1Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, USA.


PvdA catalyzes the hydroxylation of the side chain primary amine of ornithine in the initial step of the biosynthesis of the Pseudomonas aeruginosa siderophore pyoverdin. The reaction requires FAD, NADPH, and O(2). PvdA uses the same cosubstrates as several flavin-dependent hydroxylases that differ one from another in the kinetic mechanisms of their oxidative and reductive half-reactions. Therefore, the mechanism of PvdA was determined by absorption stopped-flow experiments. By contrast to some flavin-dependent hydroxylases (notably, p-hydroxybenzoate hydroxylase), binding of the hydroxylation target is not required to trigger reduction of the flavin by NADPH: the reductive half-reaction is equally facile in the presence and absence of ornithine. Reaction of O(2) with FADH(2) in the oxidative half-reaction is accelerated by ornithine 80-fold, providing a mechanism by which PvdA can ensure coupling of NADPH and ornithine oxidation. In the presence of ornithine, the expected C(4a)-hydroperoxyflavin intermediate with 390 nm absorption accumulates and decays to the C(4a)-hydroxyflavin in a kinetically competent fashion. The slower oxidative half-reaction that occurs in the absence of ornithine involves accumulation of an oxygenated flavin species and two subsequent states that are tentatively assigned as C(4a)-peroxy- and C(4a)-hydroperoxyflavin intermediates and the oxidized flavin. The enzyme generates stoichiometric hydrogen peroxide in lieu of hydroxyornithine. The data suggest that PvdA employs a kinetic mechanism that is a hybrid of those previously documented for other flavin-dependent hydroxylases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk