Send to:

Choose Destination
See comment in PubMed Commons below
Nat Neurosci. 2009 May;12(5):577-84. doi: 10.1038/nn.2307. Epub 2009 Apr 12.

HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K(+) channels.

Author information

  • 1Department of Neuroscience, Columbia University, New York, New York, USA.


The processing of synaptic potentials by neuronal dendrites depends on both their passive cable properties and active voltage-gated channels, which can generate complex effects as a result of their nonlinear properties. We characterized the actions of HCN (hyperpolarization-activated cyclic nucleotide-gated cation) channels on dendritic processing of subthreshold excitatory postsynaptic potentials (EPSPs) in mouse CA1 hippocampal neurons. The HCN channels generated an excitatory inward current (I(h)) that exerted a direct depolarizing effect on the peak voltage of weak EPSPs, but produced a paradoxical hyperpolarizing effect on the peak voltage of stronger, but still subthreshold, EPSPs. Using a combined modeling and experimental approach, we found that the inhibitory action of I(h) was caused by its interaction with the delayed-rectifier M-type K(+) current. In this manner, I(h) can enhance spike firing in response to an EPSP when spike threshold is low and can inhibit firing when spike threshold is high.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk