Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2009 Jul;76(1):144-52. doi: 10.1124/mol.108.054320. Epub 2009 Apr 10.

alpha1-Adrenergic receptor stimulates interleukin-6 expression and secretion through both mRNA stability and transcriptional regulation: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB.

Author information

  • 1Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.


Our previous studies have demonstrated that activation of alpha(1)-adrenergic receptors (ARs) increased interleukin-6 (IL-6) mRNA expression and protein secretion, which is probably an important yet unknown mechanism contributing to the regulation of cardiac function. Using Rat-1 fibroblasts stably transfected with the alpha(1A)-AR subtype and primary mouse neonatal cardiomyocytes, we elucidated the basic molecular mechanisms responsible for the alpha(1)-AR modulation of IL-6 expression. IL-6 mRNA production mediated by alpha(1)-AR peaked at 1 to 2 h. Studies of the mRNA decay rate indicated that alpha(1)-AR activation enhanced IL-6 mRNA stability. Analysis of IL-6 promoter activity using a series of deletion constructs indicated that alpha(1)-ARs enhanced IL-6 transcription through several transcriptional elements, including nuclear factor kappaB (NF-kappaB). Inhibition of alpha(1)-AR mediated IL-6 production and secretion by actinomycin D and the increase of intracellular IL-6 levels by alpha(1)-AR activation suggest that alpha(1)-AR mediated IL-6 secretion through de novo synthesis. Both IL-6 transcription and protein secretion mediated by alpha(1)-ARs were significantly reduced by chemical inhibitors for p38 mitogen-activated protein kinase (MAPK) and NF-kappaB and by a dominant-negative construct of p38 MAPK. Serum level of IL-6 was elevated in transgenic mice expressing a constitutively active mutant of the alpha(1A)-AR subtype but not in a similar mouse model expressing the alpha(1B)-AR subtype. Our results indicate that alpha(1)-ARs stimulated IL-6 expression and secretion through regulating both mRNA transcription and stability, involving p38 MAPK and NF-kappaB pathways.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk