Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2009 May 22;388(5):919-27. doi: 10.1016/j.jmb.2009.01.032. Epub 2009 Jan 23.

The predicted structure of the headpiece of the Huntingtin protein and its implications on Huntingtin aggregation.

Author information

  • 1Biophysics Program, Stanford University, Stanford, CA 94305, USA.

Abstract

We have performed simulated tempering molecular dynamics simulations to study the thermodynamics of the headpiece of the Huntingtin (Htt) protein (N17(Htt)). With converged sampling, we found this peptide is highly helical, as previously proposed. Interestingly, this peptide is also found to adopt two different and seemingly stable states. The region from residue 4 (L) to residue 9 (K) has a strong helicity from our simulations, which is supported by experimental studies. However, contrary to what was initially proposed, we have found that simulations predict the most populated state as a two-helix bundle rather than a single straight helix, although a significant percentage of structures do still adopt a single linear helix. The fact that Htt aggregation is nucleation dependent infers the importance of a critical transition. It has been shown that N17(Htt) is involved in this rate-limiting step. In this study, we propose two possible mechanisms for this nucleating event stemming from the transition between two-helix bundle state and single-helix state for N17(Htt) and the experimentally observed interactions between the N17(Htt) and polyQ domains. More strikingly, an extensive hydrophobic surface area is found to be exposed to solvent in the dominant monomeric state of N17(Htt). We propose the most fundamental role played by N17(Htt) would be initializing the dimerization and pulling the polyQ chains into adequate spatial proximity for the nucleation event to proceed.

PMID:
19361448
[PubMed - indexed for MEDLINE]
PMCID:
PMC2677131
Free PMC Article

Images from this publication.See all images (9)Free text

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk