Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1991 Nov 15;202(1):31-40.

Complete sequence and model for the C1 subunit of the carotenoprotein, crustacyanin, and model for the dimer, beta-crustacyanin, formed from the C1 and A2 subunits with astaxanthin.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Leeds, England.

Abstract

The complete sequence has been determined for the C1 subunit of crustacyanin, an astaxanthin-binding protein from the carapace of the lobster Homarus gammarus (L.). The polypeptide, 181 residues long, is similar (38% identity) to the other main subunit, A2 and to plasma retinol-binding protein. The tertiary structure of the C1 subunit has been modelled on that derived for the A2 subunit from the coordinates of retinol-binding protein. Residues lining the putative binding cavities and at the putative carotenoid binding sites of the two subunits are highly conserved. The carotenoid environments are characterized by a preponderance of aromatic and polar residues and the absence of charged side-chains. A tentative model for the dimer, beta-crustacyanin, formed between the two subunits with their associated carotenoid ligands, is discussed. The model is based on the crystal structure of the dimer of bilin-binding protein, a member of the same superfamily. This structure has enabled us to examine mechanisms for the bathochromic spectral shift of the protein-bound carotenoid and to identify likely contact regions between dimers in octameric alpha-crustacyanin.

PMID:
1935978
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk