Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS Biol. 2009 Apr 7;7(4):e1000063. doi: 10.1371/journal.pbio.1000063.

Receptive fields in primate retina are coordinated to sample visual space more uniformly.

Author information

  • 1Salk Institute for Biological Studies, La Jolla, California, United States of America. gauthier@salk.edu

Abstract

In the visual system, large ensembles of neurons collectively sample visual space with receptive fields (RFs). A puzzling problem is how neural ensembles provide a uniform, high-resolution visual representation in spite of irregularities in the RFs of individual cells. This problem was approached by simultaneously mapping the RFs of hundreds of primate retinal ganglion cells. As observed in previous studies, RFs exhibited irregular shapes that deviated from standard Gaussian models. Surprisingly, these irregularities were coordinated at a fine spatial scale: RFs interlocked with their neighbors, filling in gaps and avoiding large variations in overlap. RF shapes were coordinated with high spatial precision: the observed uniformity was degraded by angular perturbations as small as 15 degrees, and the observed populations sampled visual space with more than 50% of the theoretical ideal uniformity. These results show that the primate retina encodes light with an exquisitely coordinated array of RF shapes, illustrating a higher degree of functional precision in the neural circuitry than previously appreciated.

PMID:
19355787
[PubMed - indexed for MEDLINE]
PMCID:
PMC2672597
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk