Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Am J Pathol. 2009 May;174(5):1663-74. doi: 10.2353/ajpath.2009.080687. Epub 2009 Apr 6.

HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury.

Author information

  • 1Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg,Erlangen, Germany.

Abstract

Hypoxia-inducible transcription factors (HIFs) play important roles in the response of the kidney to systemic and regional hypoxia. Degradation of HIFs is mediated by three oxygen-dependent HIF-prolyl hydroxylases (PHDs), which have partially overlapping characteristics. Although PHD inhibitors, which can induce HIFs in the presence of oxygen, are already in clinical development, little is known about the expression and regulation of these enzymes in the kidney. Therefore, we investigated the expression levels of the three PHDs in both isolated tubular cells and rat kidneys. All three PHDs were present in the kidney and were expressed predominantly in three different cell populations: (a) in distal convoluted tubules and collecting ducts (PHD1,2,3), (b) in glomerular podocytes (PHD1,3), and (c) in interstitial fibroblasts (PHD1,3). Higher levels of PHDs were found in tubular segments of the inner medulla where oxygen tensions are known to be physiologically low. PHD expression levels were unchanged in HIF-positive tubular and interstitial cells after induction by systemic hypoxia. In rat models of acute renal injury, changes in PHD expression levels were variable; while cisplatin and ischemia/reperfusion led to significant decreases in PHD2 and 3 expression levels, no changes were seen in a model of contrast media-induced nephropathy. These results implicate the non-uniform expression of HIF-regulating enzymes that modify the hypoxic response in the kidney under both regional and temporal conditions.

PMID:
19349364
[PubMed - indexed for MEDLINE]
PMCID:
PMC2671255
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Publication Types, MeSH Terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk