Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Clin Neurophysiol. 2009 May;120(5):868-77. doi: 10.1016/j.clinph.2009.01.015. Epub 2009 Apr 3.

Semi-automatic identification of independent components representing EEG artifact.

Author information

  • 1MRC Institute of Hearing Research, Southampton, UK.



Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings.


CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA.


For eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65).


These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components.


CORRMAP helps to efficiently use ICA for the removal EEG artifacts.

Comment in

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk