Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2009 Oct;1790(10):963-9. doi: 10.1016/j.bbagen.2009.03.020. Epub 2009 Mar 31.

Genome instability, cancer and aging.

Author information

  • 1Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA. amaslov@aecom.yu.edu


DNA damage-driven genome instability underlies the diversity of life forms generated by the evolutionary process but is detrimental to the somatic cells of individual organisms. The cellular response to DNA damage can be roughly divided in two parts. First, when damage is severe, programmed cell death may occur or, alternatively, temporary or permanent cell cycle arrest. This protects against cancer but can have negative effects on the long term, e.g., by depleting stem cell reservoirs. Second, damage can be repaired through one or more of the many sophisticated genome maintenance pathways. However, erroneous DNA repair and incomplete restoration of chromatin after damage is resolved, produce mutations and epimutations, respectively, both of which have been shown to accumulate with age. An increased burden of mutations and/or epimutations in aged tissues increases cancer risk and adversely affects gene transcriptional regulation, leading to progressive decline in organ function. Cellular degeneration and uncontrolled cell proliferation are both major hallmarks of aging. Despite the fact that one seems to exclude the other, they both may be driven by a common mechanism. Here, we review age-related changes in the mammalian genome and their possible functional consequences, with special emphasis on genome instability in stem/progenitor cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk