Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2009 May 22;383(1):151-5. doi: 10.1016/j.bbrc.2009.03.145. Epub 2009 Apr 1.

Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate.

Author information

  • 1Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.

Abstract

Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.

PMID:
19344691
[PubMed - indexed for MEDLINE]
PMCID:
PMC2693912
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk