Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2009 May;19(5):770-7. doi: 10.1101/gr.086546.108. Epub 2009 Apr 2.

Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories.

Author information

  • 1Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Abstract

The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.

PMID:
19342477
[PubMed - indexed for MEDLINE]
PMCID:
PMC2675965
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1.
Figure 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk