Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2009 Jun;296(6):F1323-33. doi: 10.1152/ajprenal.90428.2008. Epub 2009 Apr 1.

Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation.

Author information

  • 1Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical Univ., Nanjing, China. smhuang@njmu.edu

Abstract

Aldosterone (Aldo) stimulates glomerular mesangial cell (MC) proliferation, in part, through an ERK1/2-dependent pathway. In this study, we examined whether Aldo activation of ERK1/2 in MC is mediated through redox-dependent EGF receptor (EGFR) transactivation, as well as the involvement of other signaling mechanisms in Aldo-induced MC proliferation. Aldo increased human MC proliferation, as determined by [(3)H]thymidine incorporation and cell counts. This increase in proliferation was blocked by inhibition of the mineralocorticoid receptor (MR). Continuing our observations downstream in the signaling pathway, we examined the ability of Aldo to activate both the Ras/MAPK and the PI3K signaling pathways. Aldo increased Ki-RasA and Ki-RasA:GTP levels, and sequentially phosphorylated c-Raf, MAPK kinase (MEK1/2), and ERK1/2. Ki-RasA small interfering RNA (siRNA), the c-Raf inhibitor GW5074, and the MEK1/2 inhibitor PD98059 reduced Aldo-induced cell proliferation by approximately 65%. Aldo also increased phosphorylation of PI3K, Akt, the mammalian target of rapamycin (mTOR), and the 70-kDa ribosomal S6 kinase (p70S6K1). Inhibition of the PI3K pathways by the selective PI3K inhibitor LY 294002, an Akt inhibitor, or the mTOR inhibitor rapamycin reduced cell proliferation by 51%. Combining LY 294002 and PD98059 completely blocked Aldo-induced MC proliferation. Next, we confirmed that Aldo exerts its effect on MAPK and PI3K activation, as well as on cell proliferation, by activating the EGFR. Pretreatment with the EGFR antagonist AG1478 inhibited MC proliferation, as well as the activation of Ras/MAPK and PI3K/Akt, suggesting that Ras/MAPK and PI3K/Akt activation occur downstream of EGFR activation. Finally, we examined the role of reactive oxygen species (ROS) in Aldo-induced transactivation of the EGFR. Aldo-induced ROS were predominantly generated by mitochondria. Pretreatment with the antioxidant N-acetyl-l-cysteine, catalase, SOD, mitochondrial respiratory chain complex I inhibitor rotenone (Rot), NADPH oxidase inhibitor apocynin, and DPI significantly inhibited Aldo-stimulated MC proliferation as well as EGFR transactivation. However, Rot reduced MC proliferation more potently than apocynin and DPI. In conclusion, Aldo stimulated cell proliferation through MR-mediated, redox-sensitive EGFR transactivation, which was dependent on the Ki-RasA/c-Raf/MEK/ERK and PI3K/Akt/mTOR/p70S6K1 signaling pathways in human MCs.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk