Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2009 Mar 20;380(4):780-4. doi: 10.1016/j.bbrc.2009.01.147. Epub 2009 Jan 29.

Lipid raft connection between extrinsic and intrinsic apoptotic pathways.

Author information

  • 1Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain. cgajate@usal.es

Abstract

Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.

PMID:
19338752
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk