Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2009 Apr 9;113(14):4887-98. doi: 10.1021/jp810715t.

A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB.

Author information

  • 1Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.

Abstract

Oxidative dealkylation is a unique mechanistic pathway found in the alpha-ketoglutarate-Fe(II)-dependent AlkB family of enzymes to remove the alkylation damage to DNA bases and regenerate nucleobases to their native state. The B3LYP density functional combined with a self-consistent reaction field was used to explore the triplet, quintet, and septet spin-state potential energy surfaces of the multistep catalytic mechanism of AlkB. The mechanism was found to consist of four stages. First, binding of dioxygen to iron in the active-site complex occurs concerted with electron transfer, thereby yielding a ferric-superoxido species. Second, competing initiation for the activation of oxygen to generate the high-valent iron-oxygen intermediates (ferryl-oxo Fe(IV)O and ferric-oxyl Fe(III)O(*) species) was found to occur on the quintet and septet surfaces. Then, conformational reorientation of the activated iron-oxygen ligand was found to be nearly thermoneutral with a barrier of ca. 50 kJ mol(-1). The final stage is the oxidative dealkylation of the damaged nucleobase with the rate-controlling step being the abstraction of a hydrogen atom from the damaging methyl group by the ferryl-oxo ligand. For this step, the calculated barrier of 87.4 kJ mol(-1) is in good agreement with the experimental activation energy of ca. 83 kJ mol(-1) for the enzyme-catalyzed reaction.

PMID:
19338370
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk