Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Neural Netw. 2009 May;20(5):781-93. doi: 10.1109/TNN.2009.2013240. Epub 2009 Mar 27.

State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case.

Author information

  • 1Department of Mathematics, Southeast University, Nanjing 210096, China.


This paper is concerned with the problem of state estimation for a class of discrete-time coupled uncertain stochastic complex networks with missing measurements and time-varying delay. The parameter uncertainties are assumed to be norm-bounded and enter into both the network state and the network output. The stochastic Brownian motions affect not only the coupling term of the network but also the overall network dynamics. The nonlinear terms that satisfy the usual Lipschitz conditions exist in both the state and measurement equations. Through available output measurements described by a binary switching sequence that obeys a conditional probability distribution, we aim to design a state estimator to estimate the network states such that, for all admissible parameter uncertainties and time-varying delays, the dynamics of the estimation error is guaranteed to be globally exponentially stable in the mean square. By employing the Lyapunov functional method combined with the stochastic analysis approach, several delay-dependent criteria are established that ensure the existence of the desired estimator gains, and then the explicit expression of such estimator gains is characterized in terms of the solution to certain linear matrix inequalities (LMIs). Two numerical examples are exploited to illustrate the effectiveness of the proposed estimator design schemes.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk