Display Settings:

Format

Send to:

Choose Destination
J Cardiovasc Pharmacol. 2009 May;53(5):414-23. doi: 10.1097/FJC.0b013e3181a15e77.

Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism.

Author information

  • 1Division of Cardiovascular Diseases, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

Abstract

A dyshomeostasis of extra- and intracellular Ca(2+) and Zn(2+) occurs in rats receiving chronic aldosterone/salt treatment (ALDOST). Herein, we hypothesized that the dyshomeostasis of intracellular Ca(2+) and Zn(2+) is intrinsically coupled that alters the redox state of cardiac myocytes and mitochondria, with Ca(2+) serving as a pro-oxidant and Zn(2+) as an antioxidant. Toward this end, we harvested hearts from rats receiving 4 weeks of ALDOST alone or cotreatment with either spironolactone (Spiro), an aldosterone receptor antagonist, or amlodipine (Amlod), an L-type Ca(2+) channel blocker, and from age/sex-matched untreated controls. In each group, we monitored cardiomyocyte [Ca(2+)]i and [Zn(2+)]i and mitochondrial [Ca(2+)]m and [Zn(2+)]m; biomarkers of oxidative stress and antioxidant defenses; expression of Zn transporters, Zip1 and ZnT-1; metallothionein-1, a Zn(2+)-binding protein; and metal response element transcription factor-1, a [Zn(2+)]i sensor and regulator of antioxidant defenses. Compared with controls, at 4-week ALDOST, we found the following: (a) increased [Ca(2+)]i and [Zn(2+)]i, together with increased [Ca(2+)]m and [Zn(2+)]m, each of which could be prevented by Spiro and attenuated with Amlod; (b) increased levels of 3-nitrotyrosine and 4-hydroxy-2-nonenal in cardiomyocytes, together with increased H(2)O(2) production, malondialdehyde, and oxidized glutathione in mitochondria that were coincident with increased activities of Cu/Zn superoxide dismutase and glutathione peroxidase; and (c) increased expression of metallothionein-1, Zip1 and ZnT-1, and metal response element transcription factor-1, attenuated by Spiro. Thus, an intrinsically coupled dyshomeostasis of intracellular Ca(2+) and Zn(2+) occurs in cardiac myocytes and mitochondria in rats receiving ALDOST, where it serves to alter their redox state through a respective induction of oxidative stress and generation of antioxidant defenses. The importance of therapeutic strategies that can uncouple these two divalent cations and modulate their ratio in favor of sustained antioxidant defenses is therefore suggested.

PMID:
19333130
[PubMed - indexed for MEDLINE]
PMCID:
PMC2802540
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Write to the Help Desk