Format

Send to:

Choose Destination
See comment in PubMed Commons below
Acta Neurobiol Exp (Wars). 2009;69(1):24-36.

Patterned growth and differentiation of human cord blood-derived neural stem cells on bio-functionalized surfaces.

Author information

  • 1In Vitro Toxicology/ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, Ispra, Italy. buzanska@cmdik.pan.pl

Abstract

Bio-functionalized surfaces were prepared to study the adherence and differentiation capacity of neural stem cells derived from human umbilical cord blood (HUCB-NSC). Cell growth platforms containing arranged arrays of adhesive molecules were created by microcontact printing on a biologically inert surface. Biomolecules used to prepare microarray platforms included the extracellular matrix protein fibronectin and the polyaminoacid poly-L-lysine. HUCB-NSC plated on microplatforms at various serum conditions showed serum and molecule type dependent capacity for adhesion and differentiation. Poly-L-lysine allowed the maintenance of stem-like non differentiated cells attached to the surface, whereas fibronectin promoted spreading and neural commitment. Serum deprivation did not influence the attachment of HUCB-NSC to fibronectin, but significantly enhanced the attachment to poly-L-lysine and promoted dBcAMP induced neuronal differentiation. A bio-pattern of squares with interconnecting lines was used to guide neuronal differentiation by directing cell protrusion outgrowth. Tailoring the geometry of the bio-pattern enabled directing and monitoring of the neural stem cells. development in the large scale multiparameter biotests.

PMID:
19325638
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nencki Institute of Experimental Biology and Polish Neuroscience Society
    Loading ...
    Write to the Help Desk