Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ann Bot. 2009 Jun;103(8):1279-89. doi: 10.1093/aob/mcp068. Epub 2009 Mar 24.

Inherited variability in multiple traits determines fitness in populations of an annual legume from contrasting latitudinal origins.

Author information

  • 1Area de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/ Tulipán s/n, E-28933 Móstoles, Madrid, Spain. ruben.milla@gmail.com

Abstract

BACKGROUND AND AIMS:

Variation in fitness depends on corresponding variation in multiple traits which have both genetically controlled and plastic components. These traits are subjected to varying degrees of local adaptation in specific populations and, consequently, are genetically controlled to different extents. In this study it is hypothesized that modulation of different traits would have contrasting relevance for the fitness of populations of diverse origins. Specifically, assuming that environmental pressures vary across a latitudinal gradient, it is suggested that inherited variation in traits differentially determines fitness in annual Lupinus angustifolius populations from contrasting latitudinal origins in western Spain.

METHODS:

Seeds of L. angustifolius from three contrasting origins were grown in a common garden. Traits related to more plastic vegetative growth and more genetically conserved phenology were measured, together with estimates of reproductive success. Fitness was estimated by the number of viable seeds per plant. Structural Equation Models were used to infer causal relationships among multiple traits and fitness, separating the direct and indirect effects of morphological, phenological and reproductive traits.

KEY RESULTS:

Phenological, vegetative and reproductive traits accounted for most of the fitness variation. Fitness was highest in plants of southernmost origin, mainly due to earlier flowering. Fitness within each seed origin was controlled by variation in different traits. Southern origin plants that grew to a larger size achieved higher fitness. However, plant size in plants of northernmost origin was irrelevant, but early flowering promoted higher fitness. Variation in fruit and seed set had a greater effect on the fitness of plants of central origin than phenological and size variation.

CONCLUSIONS:

It is concluded that modulation of a functional trait can be relevant to fitness in a given population (i.e. affecting intensity and direction), but irrelevant in other populations. This points to the need to consider integrated phenotypes when trying to unravel local adaptation effects over single traits.

PMID:
19318383
[PubMed - indexed for MEDLINE]
PMCID:
PMC2685322
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk