Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2009 May;182(1):25-32. doi: 10.1534/genetics.109.101998. Epub 2009 Mar 23.

Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing.

Author information

  • 1Department of Physiology, Kansas University Medical Center, Kansas City, Kansas 66160, USA.


Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing approximately 70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (3)Free text

F igure  1.—
F igure  2.—
F igure  3.—
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk