Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biometrics. 2009 Dec;65(4):1003-10. doi: 10.1111/j.1541-0420.2009.01223.x.

Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes.

Author information

  • 1Biometry, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, EPN-3131, Bethesda, Maryland 20892-7354, USA. kipnisv@mail.nih.gov

Abstract

Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach (National Cancer Institute method) for modeling such food intakes reported on two or more 24-hour recalls (24HRs) and demonstrate its use to estimate the distribution of the food's usual intake in the general population. In this article, we propose an extension of this method to predict individual usual intake of such foods and to evaluate the relationships of usual intakes with health outcomes. Following the regression calibration approach for measurement error correction, individual usual intake is generally predicted as the conditional mean intake given 24HR-reported intake and other covariates in the health model. One feature of the proposed method is that additional covariates potentially related to usual intake may be used to increase the precision of estimates of usual intake and of diet-health outcome associations. Applying the method to data from the Eating at America's Table Study, we quantify the increased precision obtained from including reported frequency of intake on a food frequency questionnaire (FFQ) as a covariate in the calibration model. We then demonstrate the method in evaluating the linear relationship between log blood mercury levels and fish intake in women by using data from the National Health and Nutrition Examination Survey, and show increased precision when including the FFQ information. Finally, we present simulation results evaluating the performance of the proposed method in this context.

PMID:
19302405
[PubMed - indexed for MEDLINE]
PMCID:
PMC2881223
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk