Send to:

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2009 Apr 22;57(8):3308-15. doi: 10.1021/jf803254s.

Hpf2 glycan structure is critical for protection against protein haze formation in white wine.

Author information

  • 1The Australian Wine Research Institute, Glen Osmond 5064, South Australia, Australia.


Grape-derived proteins can form haze in wine. Some cell-wall glycoproteins of Saccharomyces cerevisiae are capable of reducing protein haze formation. The basis of their haze protective activity is not yet understood. One of the S. cerevisiae cell-wall proteins, Hpf2, was produced in Pichia pastoris . An altered glycan structure in the P. pastoris -produced protein was associated with decreased solubility in water and reduced capacity to mitigate haze formation compared to native Hpf2 protein from S. cerevisiae. alpha-1,2-Linked mannose in the glycan chain was shown to be required for haze protective activity using a series of S. cerevisiae deletion mutants (mnn1-Delta, mnn2-Delta, mnn4-Delta, and mnn5-Delta), defective in different aspects of glycan processing. The effect of media additives phthalate, casamino acids, and yeast nitrogen base on Hpf2 production in P. pastoris were also evaluated. Casamino acids were shown to suppress Hpf2 production in P. pastoris .

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk