Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2009 May 12;48(18):3915-27. doi: 10.1021/bi900075d.

Crystal structure of the acid-induced arginine decarboxylase from Escherichia coli: reversible decamer assembly controls enzyme activity.

Author information

  • 1Division of Molecular Biosciences, Imperial College, London SW7 2AZ, UK.

Abstract

The acid-induced arginine decarboxylase is part of an enzymatic system in Escherichia coli that contributes to making this organism acid resistant. The arginine decarboxylase is a vitamin B(6)-dependent enzyme that is active at acidic pH. It consumes a proton in the decarboxylation of arginine to agmatine, and by working in tandem with an arginine-agmatine antiporter, this enzymatic cycle protects the organism by preventing the accumulation of protons inside the cell. We have determined the structure of the acid-induced arginine decarboxylase by X-ray crystallography to 2.4 A resolution. The arginine decarboxylase structure revealed a ca. 800 kDa decamer composed as a pentamer of five homodimers. Each homodimer has an abundance of acidic surface residues, which at neutral pH prevents inactive homodimers from associating into active decamers. Conversely, acidic conditions favor the assembly of active decamers. Therefore, the structure of arginine decarboxylase presents a mechanism by which its activity is modulated by external pH.

PMID:
19298070
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk