Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Phys Chem Chem Phys. 2009 Feb 7;11(5):872-80. doi: 10.1039/b813446d. Epub 2008 Nov 5.

The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.

Author information

  • 1Institute of Chemical Engineering and Sciences, Jurong Island, 627833, Singapore. Zhong_ziyi@ices.a-star.edu.sg

Abstract

Rh catalysts supported on ZrO(2)-based oxides were studied for ethanol steam reforming (SR) reaction. Pure ZrO(2) as the support resulted in higher H(2) production yield compared to the ZrO(2) oxide decorated with CeO(2), Al(2)O(3), La(2)O(3) or Li(2)O at the reaction temperature of 300 degrees C. Above 450 degrees C, all the catalysts exhibited similar catalytic activity. However, at low reaction temperatures (below 400 degrees C), a significant enhancement in the catalytic activity, selectivity and stability was achieved by replacing the ZrO(2) support prepared by a precipitation method (ZrO(2)-CP) with that prepared by a hydrothermal method (ZrO(2)-HT). A deactivation was observed during the EtOH SR reaction at 300 degrees C on the two catalysts of Rh/ZrO(2)-CP and Rh/ZrO(2)-HT. NH(3)-TPD experiments confirmed that the ZrO(2)-HT support had two types of acidic sites while the ZrO(2)-CP support had only one type of weak acidic sites. DRIFTS studies showed that the absorption of EtOH molecules was strong on the Rh/ZrO(2)-HT catalyst and a number of C(2) oxygenates were accumulated on the catalyst surface. Meanwhile, the EtOH absorption on the Rh/ZrO(2)-CP catalyst was weak and the accumulation of CO, carbonate and CH(x) was observed. It is concluded that the relatively strong Lewis acidic sites in the Rh/ZrO(2)-HT catalyst is responsible for the strong absorption of EtOH molecules, and the subsequent C-H breakage step (formation of acetaldehyde or called as dehydrogenation reaction) is a fast reaction on it; on the Rh/ZrO(2)-CP catalyst, the EtOH adsorption was weak and the C-C breakage was the dominating reaction which led to the accumulation of surface CO, CH(x) and CO(2) species. Therefore, it is believed that, in order to promote the absorption of EtOH molecules and to reduce the formation of metastable carbonaceous species (C(2) oxygenates) during the reaction, the catalyst should be enhanced both with Lewis acidity and with C-C bond breakage function. Also, it was found that the Rh particle size and distribution, as well as the surface area of the catalyst, were not important factors in determining the catalytic performance.

PMID:
19290335
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk