Send to:

Choose Destination
See comment in PubMed Commons below
Proteomics. 2009 Apr;9(7):1939-51. doi: 10.1002/pmic.200800249.

Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry.

Author information

  • 1Department of Chemistry, University of California at Davis, Davis, CA 95616, USA.


Protein glycosylation involves the addition of monosaccharides in a stepwise process requiring no glycan template. Therefore, identifying the numerous glycoforms, including isomers, can help elucidate the biological function(s) of particular glycans. A method to assess the diversity of the N-linked oligosaccharides released from human serum without derivatization has been developed using on-line nanoLC and high resolution TOF MS. The N-linked oligosaccharides were analyzed with MALDI FT-ICR MS and microchip LC MS (HPLC-Chip/TOF MS). Two microfluidic chips were employed, the glycan chip (40 nL enrichment column, 43 x 0.075 mm(2) i.d. analytical column) and the high capacity chip (160 nL enrichment column, 140 x 0.075 mm(2) i.d. analytical column), both with graphitized carbon as the stationary phase. Both chips offered good sensitivity and reproducibility in separating a heterogeneous mixture of neutral and anionic oligosaccharides between injections. Increasing the length and volume of the enrichment and the analytical columns improved resolution of the peaks. Complex type N-linked oligosaccharides were the most abundant oligosaccharides in human serum accounting for approximately 96% of the total glycans identified, while hybrid and high mannose type oligosaccharides comprise the remaining approximately 4%.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk