Structural studies of ionic liquid-modified microemulsions

J Colloid Interface Sci. 2009 May 15;333(2):782-90. doi: 10.1016/j.jcis.2009.02.039. Epub 2009 Feb 23.

Abstract

This work is focused on the influence of an ionic liquid (IL), i.e. ethyl-methylimidazolium hexylsulfate, on the spontaneous formation of microemulsions with ionic surfactants. The influence of the ionic liquid on structure formation in the optically clear phase region in water/toluene/pentanol mixtures in presence of the cationic surfactant CTAB was studied in more detail. The results show a significant increase of the transparent phase region by adding the ionic liquid. Conductometric investigations demonstrate that adding the ionic liquid can drastically reduce the droplet-droplet interactions in the L(2) phase. (1)H nuclear magnetic resonance ((1)H NMR) diffusion coefficient measurements in combination with dynamic light scattering measurements clearly show that inverse microemulsion droplets still exist, but the droplet size is decreased to 2 nm. A more detailed characterisation of the isotropic phase channel by means of conductivity measurements, dynamic light scattering (DLS), (1)H NMR and cryo-scanning electron microscopy (SEM), allows the identification of a bicontinuous sponge phase between the L(1) and L(2) phase. When the poly(ethyleneimine) is added, the isotropic phase range is reduced drastically, but the inverse microemulsion range still exists.