Format

Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 2009 Mar 24;119(11):1473-83. doi: 10.1161/CIRCULATIONAHA.108.838672. Epub 2009 Mar 9.

Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction.

Author information

  • 1Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.

Abstract

BACKGROUND:

Mutations in the MYBPC3 gene, encoding cardiac myosin-binding protein C (cMyBP-C), are a frequent cause of familial hypertrophic cardiomyopathy. In the present study, we investigated whether protein composition and function of the sarcomere are altered in a homogeneous familial hypertrophic cardiomyopathy patient group with frameshift mutations in MYBPC3 (MYBPC3(mut)).

METHODS AND RESULTS:

Comparisons were made between cardiac samples from MYBPC3 mutant carriers (c.2373dupG, n=7; c.2864_2865delCT, n=4) and nonfailing donors (n=13). Western blots with the use of antibodies directed against cMyBP-C did not reveal truncated cMyBP-C in MYBPC3(mut). Protein expression of cMyBP-C was significantly reduced in MYBPC3(mut) by 33+/-5%. Cardiac MyBP-C phosphorylation in MYBPC3(mut) samples was similar to the values in donor samples, whereas the phosphorylation status of cardiac troponin I was reduced by 84+/-5%, indicating divergent phosphorylation of the 2 main contractile target proteins of the beta-adrenergic pathway. Force measurements in mechanically isolated Triton-permeabilized cardiomyocytes demonstrated a decrease in maximal force per cross-sectional area of the myocytes in MYBPC3(mut) (20.2+/-2.7 kN/m(2)) compared with donor (34.5+/-1.1 kN/m(2)). Moreover, Ca(2+) sensitivity was higher in MYBPC3(mut) (pCa(50)=5.62+/-0.04) than in donor (pCa(50)=5.54+/-0.02), consistent with reduced cardiac troponin I phosphorylation. Treatment with exogenous protein kinase A, to mimic beta-adrenergic stimulation, did not correct reduced maximal force but abolished the initial difference in Ca(2+) sensitivity between MYBPC3(mut) (pCa(50)=5.46+/-0.03) and donor (pCa(50)=5.48+/-0.02).

CONCLUSIONS:

Frameshift MYBPC3 mutations cause haploinsufficiency, deranged phosphorylation of contractile proteins, and reduced maximal force-generating capacity of cardiomyocytes. The enhanced Ca(2+) sensitivity in MYBPC3(mut) is due to hypophosphorylation of troponin I secondary to mutation-induced dysfunction.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk