Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ultramicroscopy. 2009 May;109(6):730-40. doi: 10.1016/j.ultramic.2009.01.009. Epub 2009 Jan 31.

3D imaging of nanomaterials by discrete tomography.

Author information

  • 1Vision Lab, University of Antwerp (CDE), Universiteitsplein 1, B-2610 Wilrijk, Belgium. Joost.Batenburg@ua.ac.be

Abstract

The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.

PMID:
19269094
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk