Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 2009 Mar 6;323(5919):1319-23. doi: 10.1126/science.1166265.

Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization.

Author information

  • 1Nanomaterials Optoelectronics Laboratory, Polymer Program, University of Connecticut, Storrs, CT 06269, USA.

Abstract

Attaining high photoluminescence quantum yields for single-walled carbon nanotubes (SWNTs) in order to broaden their optoelectronics and sensing applications has been a challenging task. Among various nonradiative pathways, sidewall chemisorption of oxygen provides a known defect for exciton quenching through nanotube hole doping. We found that an aliphatic (dodecyl) analog of flavin mononucleotide, FC12, leads to high dispersion of SWNTs, which tend to aggregate into bundles. Unlike other surfactants, the surface organization of FC12 is sufficiently tight to exclude oxygen from the SWNT surface, which led to quantum yields as high as 20%. Toluene-dispersed, FC12-wrapped nanotubes exhibited an absorption spectrum with ultrasharp peaks (widths of 12 to 25 milli-electron volts) devoid of the characteristic background absorption of most nanotube dispersions.

PMID:
19265015
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk