Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Neurosci. 2009 Mar 4;29(9):2706-24. doi: 10.1523/JNEUROSCI.5471-08.2009.

Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins.

Author information

  • 1Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Abstract

Most mammals are dichromats, having short-wavelength-sensitive (S) and middle-wavelength-sensitive (M) cones. Smaller terrestrial species commonly express a dual gradient in opsins, with M opsin concentrated superiorly and declining inferiorly, and vice-versa for S opsin. Some ganglion cells in these retinas combine S- and M-cone inputs antagonistically, but no direct evidence links this physiological opponency with morphology; nor is it known whether opponency varies with the opsin gradients. By recording from >3000 ganglion cells in guinea pig, we identified small numbers of color-opponent cells. Chromatic properties were characterized by responses to monochromatic spots and/or spots produced by mixtures of two primary lights. Superior retina contained cells with strong S+/M- and M+/S- opponency, whereas inferior retina contained cells with weak opponency. In superior retina, the opponent cells had well-balanced M and S weights, while in inferior retina the weights were unbalanced, with the M weights being much weaker. The M and S components of opponent cell receptive fields had approximately the same diameter. Opponent cells injected with Lucifer yellow restricted their dendrites to the ON stratum of the inner plexiform layer and provided sufficient membrane area (approximately 2.1 x 10(4) microm(2)) to collect approximately 3.9 x 10(3) bipolar synapses. Two bistratified cells studied were nonopponent. The apparent decline in S/M opponency from superior to inferior retina is consistent with the dual gradient and a model where photoreceptor signals in both superior and inferior retina are processed by the same postreceptoral circuitry.

PMID:
19261865
[PubMed - indexed for MEDLINE]
PMCID:
PMC2677103
Free PMC Article

Images from this publication.See all images (11)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk