Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Mar 2;17(5):3640-50.

Array-based optical nanolithography using optically trapped microlenses.

Author information

  • 1Department of Mechanical & Aerospace Engineering Princeton University, Princeton, NJ, USA.

Abstract

Current demands on optical nanolithography require the ability to rapidly and cost-effectively write arbitrary patterns over large areas with sub-diffraction limit feature sizes. The challenge in accomplishing this with arrays of near-field probes is maintaining equal separations between the substrate and each probe, even over non-planar substrates. Here we demonstrate array-based laser nanolithography where each probe is a microsphere capable of fabricating 100 nm structures using 355 nm light when self-positioned near a surface by Bessel beam optical trapping. We achieve both a feature size uniformity and relative positioning accuracy better than 15 nm, which agrees well with our model. Further improvements are possible using higher power and/or narrower Bessel beam optical traps.

PMID:
19259204
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk